Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing

نویسندگان

  • Z. Iskierko
  • A. Checinska
  • P. S. Sharma
  • K. Golebiewska
  • K. Noworyta
  • P. Borowicz
  • K. Fronc
  • V. Bandi
  • F. D’Souza
  • W. Kutner
چکیده

Chemosensing systems were devised for the enantioselective determination of Dand L-phenylalanine (Dand L-Phe). As recognition units of these systems, molecularly imprinted polymers (MIPs) were designed, guided by DFT calculations, and then synthesized. For the preparation of these MIPs, carboxy derivatized bis(bithiophene) was used as the functional monomer. Both templated and templateextracted MIP films as well as non-imprinted polymer (NIP) films were characterized by IR spectroscopy to prove Phe templation, and then extraction. Extended-gate field-effect transistors (EG-FETs) served as transducers. The EG-FET gates were coated with Dor (L-Phe)-templated MIP films, by electropolymerization, to result in complete chemosensors. These chemosensors rapidly and selectively responded to Dand L-Phe enantiomer analytes. They readily discriminated between a homologous series of analytes differing by a single atom as well as pairs of enantiomers differing in their three-dimensional structures. Linear dynamic concentration ranges for Dand L-Phe extended from 13 to 100 mM. For both Phe enantiomers, the limit of detection was 13 mM. The enantioselectivity factor was B2.3 for both chemosensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

Extended-Gate Field-Effect Transistor based Sensor for Detection of Hyoscine N-Butyl Bromide in its Pharmaceutical Formulation

A novel recognition method for selective determination of the hyoscine N-Butyl bromide (HBB), an antispasmodic agent for smooth muscles, was devised using extended gate field-effect transistor (EG-FET) as transducing unit. For this purpose a PVC membrane, containing hyoscine n-butyl-tetraphenyl borate ion-pair as recognition component, was coated on Ag/AgCl wire, which was connected to the exte...

متن کامل

Molecularly Imprinted Polymer (MIP) Applications in Natural Product Studies Based on Medicinal Plant and Secondary Metabolite Analysis

Characterization and extraction of plant secondary metabolites are important in agriculture, pharmaceutical, and food industry. In this regard, the applied analytical methods are mostly costly and time-consuming; therefore, choosing a suitable approach is essential for optimum results and economic suitability. One of the recently considered methods used to characterize new types of materials is...

متن کامل

Preparation of a Selective L-Phenylalanine Imprinted Polymer Implicated in Patients with Phenylketonuria

Abstract Background: Molecular imprinting is a method for synthesizing polymers with structure-selective adsorption properties with applications such as, selectivity binding, drug delivery systems and anti-bodies. The present study aims at optimizing the preparation of molecularly imprinted polymer (MIP) against l-phenylalanine, in order to increase phenylalanine-binding in Enzymatic Intestinal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017